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As cities continue to grow and the number of vehicles on the road increases, traffic congestion and pollution 
have become major issues. Fortunately, significant efforts have been made in recent decades to alleviate these 
problems through research and the development of Intelligent Transportation Systems (ITS). Governments are 
now utilizing advanced ITS technologies to better understand traffic patterns and make informed decisions on 
how to manage traffic. In this paper, we will explore the state-of-the-art methods employed in ITS for predicting 
traffic flow and speed, as well as classifying different traffic situations. We will also examine the preprocessing 
techniques used in these tasks, along with the metrics used to evaluate the results. By understanding the latest 
advancements in ITS, we can work towards creating more efficient and sustainable transportation systems that 
benefit both individuals and society as a whole.
1. Introduction

Data science has emerged as a crucial field in recent decades, en-

abling the extraction of knowledge, pattern detection, and data-driven 
insights for informed decision-making. The rapid growth of popula-

tion and vehicles (More et al., 2016) originated several other problems 
(time spent in traffic, health issues related to stress, increase in fuel 
consumption, air and noise pollution and the number of accidents) 
creating an urgent need for intelligent vehicular systems that can ef-

ficiently manage and control traffic (Fitters et al., 2021, Priambodo & 
Ahmad, 2018). These systems are essential not only for city administra-

tions but also for individual commuters (Sinha et al., 2020). Intelligent 
Transportation Systems (ITS) play a pivotal role in revolutionizing the 
transportation industry by employing traffic data for effective decision-

making and traffic control (Wang et al., 2019). ITS encompasses various 
components, including traffic forecasting (or estimation), optimization 
techniques, and real-time information dissemination to improve traffic 
conditions and minimize travel delays (Alam et al., 2017). By provid-

ing drivers with current and projected traffic conditions, ITS enables 
informed route planning, considering potential delays and travel times 
for different routes within a city (Sinha et al., 2020). Consequently, ITS 
employs diverse prediction and classification models for traffic forecast-

ing and management.

Traffic prediction has been a subject of extensive research since the 
late 1970s (Vázquez et al., 2020), while the identification and classi-
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fication of traffic patterns are crucial for modern traffic management 
facilitated by ITS (Krishnakumari et al., 2017). The existing litera-

ture encompasses numerous studies focusing on traffic flow estimation, 
prediction, and classification, with researchers striving to develop en-

hanced control strategies to mitigate the escalating traffic issues of the 
past few decades (Wang et al., 2019, de Medrano & Aznarte, 2020, Mün-

gen & Çetın Tas, 2021, Fitters et al., 2021, Wang & Thulasiraman, 2019, 
Ji et al., 2020).

Hence, several important concepts arise. Creating and predicting 
general traffic indicators, such as traffic flow, density, and mean speed, 
is crucial for effective traffic control and congestion prevention (Mena-

Oreja & Gozalvez, 2021). Traffic flow represents the number of vehicles 
passing through a reference point per unit of time, while traffic density 
refers to the number of vehicles in a specific road section at a given mo-

ment. Mean speed indicates the average speed of vehicles in a particular 
road section (Mena-Oreja & Gozalvez, 2021). These indicators serve as 
the foundation for predicting traffic flow and facilitating traffic control. 
Prediction depends on factors like the specific road and time, consider-

ing spatiotemporal aspects. Traffic patterns vary during weekdays and 
weekends due to factors such as work schedules, school days, weather 
conditions, holidays, road networks, and public transportation quality. 
Accurate traffic flow prediction involves capturing and utilizing these 
patterns.

Moreover, prediction methods are utilized for both short-term and 
long-term traffic flow forecasting. Short-term prediction aids in route 
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Fig. 1. Flowchart of the paper screening procedure.
management, trip duration estimation, and traffic signal synchroniza-

tion, improving traffic conditions and congestion avoidance. Machine 
learning techniques, including parametric models, deep learning mod-

els, and genetic programming, are commonly employed for short-term 
traffic flow prediction. Long-term prediction focuses on forecasting traf-

fic flow for the following day or days. Additionally, classification meth-

ods also play a crucial role in traffic management by categorizing roads 
or road segments based on their traffic conditions, allowing the determi-

nation of congestion levels. Classification techniques involve clustering 
and categorizing roads with similar characteristics and congestion lev-

els. The number of congestion categories can vary, ranging from binary 
classifications (e.g., congested and not-congested) to more detailed clas-

sifications with multiple congestion levels.

Therefore, accurate traffic prediction and classification are essential 
for efficient traffic management and control. However, existing surveys 
and reviews predominantly concentrate on specific types of models. For 
example, Shi et al. (2019) compare only hybrid deep learning models 
for traffic flow prediction, while Wang (2021) review graph neural net-

works and compare them with Convolutional Neural Networks for traf-

fic forecasting. In contrast, by describing and analyzing state-of-the-art 
models utilized for traffic prediction and classification in Europe over 
the past five years, this paper provides a comprehensive understanding 
of the whole process involved in traffic prediction and classification. 
This encompasses the data types used for traffic prediction and clas-

sification, data preprocessing techniques, prediction methods such as 
parametric models, deep learning models, and genetic programming, 
as well as classification models including clustering and classification 
approaches. Furthermore, we discuss the evaluation metrics employed 
2

to assess the performance of prediction and classification models. By 
adopting a broader perspective, the present study fills a gap in the ex-

isting literature that mainly focuses on specific model types.

The structure of the paper is as follows: Section 2 outlines the 
methodology employed to identify relevant articles about traffic pre-

diction and classification. Section 3 presents the results of the literature 
search conducted in Section 2 regarding 5 different scopes: Type of 
data, Data preprocessing strategies, prediction and classification tasks, 
and performance evaluation metrics. Section 4 provides a comprehen-

sive discussion of each of these scopes and section 5 presents the main 
conclusions drawn from the study.

2. Method

The purpose of this research is to give an overview and discuss the 
several methods used in the last five years to tackle the problem of 
traffic prediction and classification. In order to achieve this we followed 
a screening and selection procedure based on 3 steps: identification, 
screening and eligibility. An overview of the method is shown in Fig. 1.

2.1. Identification

In order to find all relevant studies in the identification step, we first 
organised keywords into two different groups, those related to traffic 
and those related to traffic indicators and machine learning. We iden-

tified different synonyms for each group (as can be seen in detail in 
Table A.4) which were used to search for papers in four technological 
libraries: ACM Digital Library, Web of Science, IEEE Xplore and Scopus. 
The keywords search field covered only the title. At the end of this step, 

duplicates were removed.
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Table 1

Summary of the type of data used for prediction and classification of traffic flow. For each specific type of data, the table reports references, and the percentage of 
papers (relative to the total number of papers) using that specific type of data.

Type of Data References % of studies

Historical Data Wang et al. (2019), Alam et al. (2017), Krishnakumari et al. (2017), de Medrano and Aznarte (2020), Müngen and Çetın Tas (2021), Fitters et 
al. (2021), Wang and Thulasiraman (2019), Ji et al. (2020), Priambodo and Ahmad (2018), Izhar et al. (2020), Culita et al. (2020), Agafonov 
(2020), Mystakidis and Tjortjis (2020), Di et al. (2019), Silva and Martins (2020), Loumiotis et al. (2018), Kunde et al. (2017), Chu et al. 
(2021), Laharotte et al. (2017), Toshniwal et al. (2020), Spławińska (2017), Ekárt et al. (2020), Offor et al. (2019)

76.7%

Simulator Data Vázquez et al. (2020), Mena-Oreja and Gozalvez (2021), Zambrano-Martinez et al. (2017), Offor et al. (2019), Sarlas and Kouvelas (2019) 16.7%

Real-time Data Sinha et al. (2020), More et al. (2016), Loumiotis et al. (2018), Kalamaras et al. (2018) 13.3%

Floating Car Data Mena-Oreja and Gozalvez (2021), Laharotte et al. (2017), Vázquez et al. (2020) 10.0%
2.2. Screening

The identification step resulted in 4127 papers; however, many of 
them were not relevant to our work (not related to traffic data, not re-

lated to the Computer Science field, etc.). Therefore for the screening 
step, we removed papers based on inclusion and exclusion criteria de-

fined by the following criteria:

c1: Only related to traffic data. For this, we defined a set of keywords 
related to not relevant areas of study (e.g., network traffic) and 
used those to refine the search queries (all the keywords can be 
seen in Table A.5).

c2: Published in the last five years (2017 to 2021).

c3: Final and written in English.

c4: Related to subject areas relevant to our work such as Computer 
Science, Engineering, Mathematics, Decision Sciences, and Social 
Sciences, among a few others.

c5: Uses traffic data from Europe.

c6: Only sensor data from stationary sensors around urban centres or 
traffic-congested areas, such as freeways.

Applying the first four criteria was made using academic libraries filters 
and applied over title and abstract, resulting in 565 papers. These were 
fully screened and as a result of using the two last criteria (c5 and c6), 
50 papers resulted. The last criterion eliminated articles that were based 
on video-captured data, since our main focus was on sensor data which 
typically comes in the format of tabular data.

2.3. Eligibility

In the last step, the resulting papers were separated between re-

search and review articles, where 22 were selected as reviews, system-

atic reviews and surveys, and 28 as research articles. After analysing all 
the referenced papers in the resulting 28, we manually added two more 
that we found relevant to our research, resulting in a set of 30 papers 
(with 21 being relevant to prediction models, and 9 to classification 
models).

3. Results

The most relevant research found by the methodology adopted in 
this manuscript will provide an understanding of traffic prediction 
and classification methods found in the literature. Thus, this section 
is divided into several main relevant topics: types of data, data pre-

processing techniques, prediction methods, classification methods, and 
performance metrics to analyse and compare results.

3.1. Type of data

Table 1 presents an overview of the type of data used in each of the 
analysed papers. As can be seen, there are several types of data that 
can be used to classify and predict traffic flow: historical data, real-
3

time data, simulation-generated data, floating car data or video footage 
of traffic. Nowadays, video captured footage is being used more and 
more due to advances in deep learning methods, computer vision, and 
autonomous driving. Although worth mentioning, we eliminated any 
article that used video-captured data, as explained in the methodology 
section 2.

From the studies found by our query, historical data is the type of 
data most used in the literature being identified in around 77% of the 
studies. Simulator data was identified in only around 17% of the studies 
and real-time data was identified in around 13% of the studies. Finally, 
our query identified 10% of the studies that use floating car data.

Historical data refers to data collected over a month or several 
months in a city or on some roads in a city. Usually, this data is pro-

vided by the government and collected by stationary sensors around 
the city. This type of data can be used to predict and classify data in the 
short and long term. For instance, we can use data from the past week 
to predict traffic flow on the next day or use the data from one hour 
ago to predict traffic flow in the next hour. According to Culita et al. 
(2020), this type of data can be used as historical and real-time data.

Real-time data is data collected, as well as historical data, from sen-

sors located in a city in real-time and used to predict and classify traffic 
flow for the short term. Meaning that we can only make good predic-

tions or classifications of traffic in the next few minutes or hours.

Another type of data is data generated with a simulator, which is a 
widely used type of data to complement historical data when there are 
few historical data and to better train the models used. The simulators 
generate traffic data, based on historical data, according to the user 
specifications. Some of the simulators mentioned in the literature are 
Aimsun (Vázquez et al., 2020) and SUMO (Zambrano-Martinez et al., 
2017).

And finally, Floating Car Data (FCD), which is typically time-

stamped geolocalization and speed data directly collected by moving 
vehicles, in contrast to traditional traffic data collected at a fixed loca-

tion by a stationary device or observer. Modern vehicles are connected 
to a network and can provide this type of data. Furthermore, related 
data can also be generated using a simulator (Vázquez et al., 2020).

3.2. Data preprocessing strategies

Table 2 presents an overview of the data preprocessing techniques 
used in the papers identified by our query. As can be seen, 30% of the 
studies were identified as using techniques to handle missing values, ei-

ther by imputation or by removal, and to handle outliers, and 30% of 
the studies presented the aggregate of the data in time intervals, such 
as aggregate average traffic speed over a 10-minute interval (e.g., Aga-

fonov (2020)). Also, data normalization was identified in around 27% 
of the studies, while feature selection and extraction techniques were 
identified in around 17% and 7% of the studies, respectively. Finally, 
data discretization and eliminating redundancy from the dataset were 
identified in 3.3% of the studies.

The quality of the results presented by a prediction or a classification 
method depends largely on the type and quality of data preprocessing. If 
we want to obtain good results, we need to perform a good preprocess-
ing of the raw data. According to Table 2, most of the preprocessing 
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Table 2

Categorization of the data preprocessing techniques found in the literature. For each specific preprocessing category, the table reports the type of task (prediction 
(P), classification (C), or both) where the preprocessing category was identified, the corresponding references, and the percentage of papers (relative to the total 
number of papers) using that specific preprocessing.

Preprocessing Techniques Type of task References % of studies

Handling missing values and outliers both Sinha et al. (2020), Vázquez et al. (2020), de Medrano and Aznarte (2020), Fitters et al. (2021), Agafonov 
(2020), Kunde et al. (2017), Toshniwal et al. (2020), Ekárt et al. (2020), Kalamaras et al. (2018)

30.0%

Aggregation of data in time intervals both Agafonov (2020), de Medrano and Aznarte (2020), Fitters et al. (2021), Kunde et al. (2017), Mystakidis 
and Tjortjis (2020), Kalamaras et al. (2018), Mena-Oreja and Gozalvez (2021), Spławińska (2017), 
Toshniwal et al. (2020)

30.0%

Data normalization both de Medrano and Aznarte (2020), Ji et al. (2020), Wang and Thulasiraman (2019), More et al. (2016), 
Izhar et al. (2020), Agafonov (2020), Kunde et al. (2017), Chu et al. (2021)

26.7%

Feature Selection both Alam et al. (2017), Fitters et al. (2021), Mystakidis and Tjortjis (2020), Toshniwal et al. (2020), Izhar et 
al. (2020)

16.7%

Feature Extraction C Krishnakumari et al. (2017), Zambrano-Martinez et al. (2017) 6.7%

Data discretization C Mystakidis and Tjortjis (2020) 3.3%

Eliminate redundancy P Di et al. (2019) 3.3%
categories appear in both prediction and classification tasks of traffic 
flow. However, feature extraction and data discretization appear only 
in studies related to the classification of traffic flow, while eliminating 
redundancy appears only in the prediction task.

In particular, in general, almost every dataset concerning traffic data 
contains a large number of missing values in some of the features (e.g., 
Kalamaras et al. (2018), Agafonov (2020), Sinha et al. (2020)). This 
may occur because of a malfunction of a data collector, the bad reading 
of a situation, or a sensor that is obstructed and cannot obtain a reading. 
Therefore, to eliminate these missing values, a decision needs to be 
made on how these data will be handled. For example, if there are 
many missing values in one feature, most of the time, the feature is 
eliminated and no longer considered. But there are other ways to handle 
missing values, one can fill in the missing values with some imputation 
technique, such as the median value of all the measured data in the last 
measuring window.

Another problem concerning the raw data set is that sometimes a 
value is wrongly calculated, the so-called outliers, and needs to be 
identified and replaced or removed (de Medrano & Aznarte, 2020, Kala-

maras et al., 2018). For example, the speed of a vehicle cannot be 
negative. Just like what is done for the missing values, the wrong val-

ues can be either removed or replaced with the median value of all the 
measured data for that feature.

In both tasks, data normalization is an important step to improve 
performance and training stability of machine learning algorithms by 
ensuring that data presented in different scales are in the same scale, 
without distorting differences in the range of values (e.g., Chu et al. 
(2021), Ji et al. (2020), More et al. (2016)). Several normalization tech-

niques can be applied to data, and the most common ones are linear 
scaling or z-score. The first one consists in convert the data to the range 
0 and 1 (or sometimes -1 to +1), and it should be used if the data is 
approximately uniformly distributed across the range. While the latter 
scales the data to ensure that the feature distribution has a mean 0 and 
standard deviation 1, and it is useful when there are a few outliers, but 
not so extreme, in the feature distribution.

As explained in Section 3.1, traffic flow datasets are usually from 
stationary sensors around the city and are collected over a time period. 
All the information gathered from those sensors needs to be re-arranged 
to be fed to machine learning algorithms (either for prediction or clas-

sification tasks). Thus, it is typical to aggregate the information of the 
variables collected by the sensors in time intervals, for instance, Kala-

maras et al. (2018) aggregated data in 5 minutes time intervals to 
forecast traffic speeds, while Toshniwal et al. (2020) aggregated the 
number of vehicles of the raw data in 5, 15, 30 or 60 minutes intervals 
to identify the factors that affect the traffic flow patterns in an urban 
4

area.
Moreover, when the data have a lot of features, feature selection can 
be performed to remove features that are not relevant to the work, al-

lowing to reduce the computational cost of modelling and improving 
the performance of the model. In the context of traffic flow, feature se-

lection can be found in the prediction task (e.g., Alam et al. (2017), 
Fitters et al. (2021)) as well as in the classification task (e.g., Mys-

takidis and Tjortjis (2020), Toshniwal et al. (2020)). In the literature 
it is possible to encounter several techniques for feature selection, be-

ing the most common ones based on filters and wrappers methods. The 
filters methods consist of selecting features based on statistics measures, 
such as information gain or chi-square test, which means the selection 
is independent of the learning algorithm to be used. While wrapper 
methods consist of selecting the features by considering a search prob-

lem, where different combinations of features are made, evaluated and 
compared with other combinations. The most common wrapper meth-

ods are forward selection (features are added iteratively to improve the 
performance of the learning algorithm) and backward elimination (fea-

tures are eliminated iteratively, starting by the least significant, until 
the performance of the learning algorithm does not improve).

Many other preprocessing techniques were found in the literature, 
for instance, feature extraction techniques (Zambrano-Martinez et al., 
2017) and data discretization (Mystakidis & Tjortjis, 2020) were found 
in classification tasks, and random undersampling (Izhar et al., 2020) to 
balance the data and remove bias in classification results. Some other 
preprocessing techniques found were more specific to traffic flow pre-

diction tasks, such as organizing traffic variables (time mean speed, 
occupancy and mean length of the vehicles) into images with three 
channels (Mena-Oreja & Gozalvez, 2021) or splitting each city into re-

gions (Ji et al., 2020).

Finally, data used with prediction and classification methods should 
be divided into train, test and sometimes validation sets. For prediction 
tasks, the data should be split to ensure the time dependency, so typ-

ically the first hours, days or months of the collected data are used to 
predict the following desired time period. While, for classification tasks, 
the data is typically divided into 80% for training and 20% for testing, 
or a cross-validation scheme is employed. This is valid if the classifi-

cation task does not use clustering methods, otherwise, the split of the 
data may not be required since we do not have prior information on the 
data and hence, we are employing unsupervised methods. According to 
Appendix B, some papers do not provide such information which makes 
it difficult to assess the reliability and accuracy of the results.

3.3. Prediction task

In this section, we will discuss the different methods used for pre-

dicting traffic flow, which can be broadly categorized as deep learning 

models, parametric models and genetic programming. According to 
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Fig. 2. Percentage of documents focused on prediction task categorized according to the type of model used (some documents can appear in more than one 
sub-category). RNNs: Recurrent Neural Networks, CNNs: Convolutional Neural Networks, GNNs: Graph Neural Networks.
Fig. 2, out of the 21 documents identified in the literature as doing 
prediction of traffic flow, 76% used deep learning models and less than 
40% used parametric models. Only one study (around 5%) was iden-

tified as using genetic programming to predict traffic flow. Detailed 
information about the references that belong to each category of the 
prediction task can be found in Appendix B. In the following sections, 
we will present details of each one of these categories for the prediction 
task, including references and a brief explanation of the models.

3.3.1. Deep learning models

The ability of deep learning models to capture complex patterns and 
relationships in data has led to their widespread adoption and popular-

ity in traffic flow prediction. Several types of deep learning models have 
been identified in the literature, namely Recurrent Neural Networks 
(RNNs), Convolutional Neural Networks (CNNs) and Graph Neural Net-

work (GNN). According to Fig. 2, out of the 21 documents identified as 
prediction, 38% of the documents use RRNs, almost 24% of the docu-

ments use CNNs, 9.5% of the documents use GNNs, and 33% use other 
types of architectures, such as autoencoders.

A. Recurrent Neural Network (RNN) The most used methods usually 
utilize Recurrent Neural Networks (RNN) and their variants, as in Long-

Short Term Memory (LSTM), to extract spatial relationships from the 
whole city by modelling citywide traffic. For instance, Wang and Thu-

lasiraman (2019) used LSTM to predict traffic flow and speed. The 
authors used three prediction designs: one-to-one (train the model with 
the temporal information of one road to predict the traffic flow in the 
same road), many-to-one (train the model with temporal information 
of several roads to predict one road), and many-to-many (train the 
model with temporal information of several roads and predict multi-

ple roads). On the other hand, Vázquez et al. (2020) implemented four 
different Deep Learning methods (LSTM, Gated Recurrent Unit (GRU), 
Spatiotemporal Recurrent Convolutional Network (SRCN) and a High-

Order Graph Convolutional Long Short-Term Memory (HGC-LSTM)) to 
perform traffic forecasting in urban contexts, using floating car data 
to predict the average speed of the network road sections. In addition 
5

to using statistical models, Culita et al. (2020) used LSTM to predict 
traffic to avoid traffic congestion by adjusting the phase duration of 
the traffic lights that control each crossroad according to the real traf-

fic conditions. Fitters et al. (2021) proposed an Outlier Enriched Long 
Short Term Memory (OE-LSTM) model to predict traffic flow, which em-

ploys a multi-step framework to detect outliers in the traffic flow and 
uses these outliers to learn the spatio-temporal correlations between dif-

ferent locations in the traffic network. Finally, Chu et al. (2021) used 
LSTM, GRU and Stacked Auto-Encoders (SAEs) to predict traffic flow in 
Finland.

B. Convolutional Neural Networks Convolutional neural networks

(CNN) are typically used to process images and assign importance to dif-

ferent aspects of an image in order to differentiate one from the other. 
However, one can apply CNNs in different contexts as long as the input 
is organized in the format of an image. For instance, de Medrano and 
Aznarte (2020) used the Convo-Recurrent Attentional Neural Network 
(CRANN) model, which combines neural modules (temporal, spatial, 
and dense) to exploit the various components identified in a spatio-

temporal series: seasonality, trend, inertia and spatial relations. Also, 
Mena-Oreja and Gozalvez (2021) proposed an error-recurrent convolu-

tional neural network (eRCNN) to predict in the short term the three 
fundamental traffic variables (traffic density, traffic flow, and space 
mean speed) using Floating Car Data (FCD). The FCD was organized 
to be an image with different channels (like an RGB image). On the 
other hand, Di et al. (2019) proposed a spatiotemporal traffic prediction 
model, namely CPM-ConvLSTM, consisting of three steps (congestion 
propagation pattern graph construction, spatial matrix construction, 
and congestion level prediction) to make a short-term prediction of the 
congestion level for each segment of the road.

C. Graph Neural Networks Regarding non-Euclidean structured data, 
such as spatial networks, some studies use Graph Convolution Networks 
(GCNs) to capture spatial patterns. For instance, Agafonov (2020) used 
a Graph Convolutional Neural Network for traffic flow prediction tak-

ing into account daily and weekly patterns of traffic flow distributions. 
While Vázquez et al. (2020) used a High-Order Graph Convolutional 
Long Short-Term Memory Neural Network (HGC-LSTM), which applies 

a CNN to the network graph encoded as a matrix.
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D. Other Neural Networks Besides CNNs, GCNs, and RNNs (and its vari-

ants), other neural networks were identified in the literature to tackle 
the problem of traffic flow prediction, such as General Regression Neu-

ral Network (GRNN), or Autoencoders. For instance, Loumiotis et al. 
(2018) used a GRNN for short-term traffic prediction, taking advantage 
of the fast learning ability and the convergence to the optimal surface. 
To demonstrate the appropriateness of GRNN, the authors compared 
the result with a Multi-Layer Perceptron (MLP) and a group method 
for data handling (GMDH) neural network. On the other hand, Ji et 
al. (2020) proposed a spatiotemporal deep learning model for the spa-

tiotemporal potential energy fields (similar to water flow driven by the 
gravity field), consisting of a temporal component to model the tempo-

ral correlation and a spatial component to model spatial dependencies. 
While Müngen and Çetın Tas (2021) used a GRNN, which consists of 
three independent components with the same structure. Each compo-

nent considers the recent time series, the daily-periodic time series, and 
the weekly-periodic time series with different patterns in traffic data, 
respectively. Also, Kunde et al. (2017) implemented a Feed-Forward 
Neural Network (FFNN) to predict traffic for future temporal horizons of 
5, 10, 15, 30 and 45 minutes and used four different input settings (only 
historical values of the target sensor to predict a future value, only his-

torical values from nearest neighbours excluding the target sensor, only 
historical values from nearest neighbours including the target sensor, 
and historical values from all sensors). On the other hand, Priambodo 
and Ahmad (2018) proposed a neural network that uses backpropaga-

tion to predict traffic speed by investigating the spatial and temporal 
correlation on neighbouring roads.

3.3.2. Parametric models

Parametric models, including both traditional statistical models and 
ensemble methods, have also been widely used in traffic flow predic-

tion. We identified several categories of parametric models, according 
to Fig. 2, out of the 21 documents identified with the prediction task, 
14% of the documents used auto-regressive models, 9.5% used regres-

sion, 9.5% used instance-based models, almost 5% of the documents 
used ensemble methods, and 14% used another parametric model, such 
as support vector machines or Bayesian Kriging model.

A. Auto-regressive models This kind of model focuses on predicting the 
future based on data from the past, typically it uses a linear combination 
of the past values of the variables. Extensive studies exist on traffic 
flow prediction, and the most used approaches were statistical models, 
such as Auto-Regressive Integrated Moving Average (ARIMA) (Sinha et 
al., 2020, Culita et al., 2020). More specifically, Culita et al. (2020)

applied ARIMA and LSTM to predict real urban traffic from the city of 
Bucharest and compare and discuss the applicability of both methods to 
that scenario. While Sinha et al. (2020) applied ARIMA to predict future 
traffic density on specific roads of Slovenia. Also, Space-Time ARIMA 
(STARIMA) model was used by Kalamaras et al. (2018) to predict traffic 
flow by considering multiple traffic-related features from one road that 
can influence other roads of the network.

B. Regression models Regression models are used to model the relation-

ship between the target variable (in this context, traffic flow) and one 
or more independent variables. There are several types of regression 
models, namely linear regression, logistic regression, and polynomial 
regression, among many others. For instance, Alam et al. (2017) applied 
Linear Regression, Sequential Minimal Optimisation (SMO) Regression, 
and M5 Base Regression Tree and Regression Trees to make predictions 
of traffic flow in the city of Porto, Portugal. Silva and Martins (2020)

applied several different machine learning models, including multiple 
regression, to predict traffic in the city of Braga, Portugal, using data 
collected by a fleet of buses from the local public transport company.

C. Instance-based models This is a family of algorithms that do not try 
6

to model any distribution for the training data but instead compare 
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new instances with the ones seen in the training data. The most used 
algorithm in this family is the k-nearest neighbour (k-NN). For instance, 
Silva and Martins (2020) used k-NN to make predictions on the city of 
Braga, Portugal, by averaging the predictions to the closest values for 
the input values.

D. Ensemble methods Ensemble methods are used to combine multiple 
models to produce a more robust and improved result. There are sev-

eral ensemble methods in the literature, such as voting, averaging, and 
boosting, among others. In the context of traffic flow prediction, our 
search identified the application of random forest to data collected in 
the city of Braga (Silva & Martins, 2020).

E. Other parametric methods Finally, our search query identified other 
parametric models such as support vector machines and Kriging-based 
models. For instance, Müngen and Çetın Tas (2021) used Support Vec-

tor Machine models to predict traffic flow one hour ahead. While Offor 
et al. (2019) used a Linear Predictor (Kriging algorithm) and a Multi-

Model Bayesian Kriging model to predict urban traffic, which is able 
to represent congested regions and interactions in upstream and down-

stream areas.

3.3.3. Genetic programming

Finally, Ekárt et al. (2020) proposed the GENetic Programming with 
Transfer LEarning (GENTLE) algorithm to generate Single Source Trans-

fer Learning (SSTL) and Multiple Source Transfer Learning (MSTL) mod-

els. The resulting algorithm uses knowledge from other road segments 
to predict vehicle flow through a junction where traffic data are un-

available.

3.4. Classification task

According to Fig. 3, out of 9 documents identified in the literature 
as doing classification of traffic flow, 55% of studies used clustering 
methods, while the remaining 45% used classification techniques. De-

tailed information about the references that belong to each category of 
the classification task can be found in Appendix B. In the following sec-

tions, we will present details, references and brief explanations of the 
models for each one of these categories.

3.4.1. Clustering methods

Clustering methods are used to capture the structure of the data by 
grouping data points with similar characteristics. These methods can 
be used to classify each data point into a specific group, given a set 
of data points. These models evaluate each part of the city or road in 
terms of traffic and at what hours and days the roads are congested 
or not congested. This can be done by classifying each situation into 
different traffic levels, as many as necessary. Several types of cluster-

ing methods have been identified, namely partitional, hierarchical, and 
other types. According to Fig. 3, out of 9 documents identified with 
classification task, more than 44% of the documents used partitional 
methods (e.g., k-means), 33% used hierarchical clustering (e.g., aver-

age linkage), and 22% used another type of clustering methods, such as 
density-based methods. For instance, Zambrano-Martinez et al. (2017)

used the k-means clustering algorithm to divide all road segments into 
four clusters (categories) of traffic level, which were: increasing traf-

fic, decreasing traffic, constant traffic, and unique traffic. Laharotte et 
al. (2017) used a generative probabilistic model, called Latent Dirichlet 
Allocation (LDA), associated with a clustering indicator, named per-

plexity, to categorize as recurrent or non-recurrent state results directly 
from the confrontation of the perplexity to its associated threshold (per-

plexity values above the threshold are classified as non-recurrent).

Moreover, Toshniwal et al. (2020) used the DBSCAN algorithm to 
classify and divide days into two clusters, i.e., weekdays and weekends. 
Furthermore, the authors used Partition Around Medoids (PAM) and 

Agglomerative Nesting (AGNES) to cluster the working day profiles for 
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Fig. 3. Percentage of documents focused on classification task categorized according to the type of model used (some documents can appear in more than one 
sub-category).
roads remaining after preprocessing, obtaining six clusters in which all 
roads belonging to the same cluster have the same characteristics in 
terms of traffic. Spławińska (2017) used an agglomerative and k-means 
clustering algorithm to determine the new conversion factors suitable 
for freeways and expressways and directional analysis in heavy vehi-

cle groups. Finally, Wang et al. (2019) used the affinity propagation 
(AP) clustering algorithm to provide drivers with information about the 
roads for both peak and non-peak hours.

3.4.2. Classification methods

Classification methods allow the separation of data into a set of re-

quired classes by training the models with input data points together 
with the class label information. In Fig. 3, out of 9 documents iden-

tified with classification task, 22% used logistic regression to classify 
traffic flow, 3% used decision tree, and another 3% used support vector 
machine, while almost 7% used another type of classification algorithm, 
such as multinomial naive Bayes. For instance, Mystakidis and Tjortjis 
(2020) used decision tree classifiers to classify traffic into three cate-

gories: 0, which means that the road has low congestion, 1 for medium 
congestion, and 2 for high congestion. They also used these classifica-

tion methods to predict the future traffic level. Izhar et al. (2020) used 
two classifiers: Support Vector Machine (SVM) and Multinomial Naive 
Bayes (MNB). The authors used a hybrid feature-based label genera-

tion to predict traffic congestion. Based on the average speed and the 
number of vehicles, these two features can determine whether there is 
congestion or not. Also, Sarlas and Kouvelas (2019) created and com-

puted six road traffic indicators to divide road intersections into two 
categories: high importance (critical set of nodes) and the complement 
set. In addition to the two indicators constructed based on the dynamic 
traffic data analysis, four graph theory indicators were built. The au-

thors proposed a way to combine all these indicators and derived a 
generic ranking of nodes based on their criticality. The ranking aimed 
at classifying the signalized intersections into two groups, the high im-
7

portance (critical set of nodes) and the complement set.
3.5. Performance evaluation metrics

After applying the suitable preprocessing techniques to the data, di-

viding the dataset into train and test sets (in some cases, train, test, and 
validation sets), and applying the methods explained in the previous 
subsection, it is crucial to evaluate the results and the performance of 
the methods. Hence, the results obtained by the approaches are com-

pared to the real value of the data. Some state-of-the-art metrics are 
used to do so, but the metrics are different for prediction and classifica-

tion methods.

From Table 3 we can see an summary of the performance evaluation 
metrics identified in the literature. For prediction models, evaluation 
metrics measure the error between predicted observations and real val-

ues. The most frequently used metrics are Root Mean Squared Error 
(RMSE), Mean Absolute Error (MAE) and Mean Absolute Percentage Er-

ror (MAPE), with 40%, 40% and 26.7% of the studies using the metric, 
respectively.

In detail, consider a set of real observations 𝑌 = {𝑦1, 𝑦2, ..., 𝑦𝑛} and 
a prediction model Φ. The model Φ predicts a set of observations 𝑌 =
{𝑦̂1, 𝑦̂2, ..., 𝑦̂𝑛}, and we need to assess the performance of that model by 
comparing the observed values with the predicted ones. Thus, several 
metrics can be used for this purpose as presented in Table 3, and we will 
explain in more detail the most widely used in the literature. Hence, 
RMSE is a metric used to measure the average magnitude of the error, 
and is computed by:

𝑅𝑀𝑆𝐸 =
√
𝑀𝑆𝐸 =

√√√√ 1
𝑛

𝑛∑
𝑖=1

(𝑦𝑖 − 𝑦̂𝑖)2. (1)

On the other hand, MAE measures the overall mean deviation of the 
predicted value and is given by:

𝑀𝐴𝐸 = 1
𝑛

𝑛∑
𝑖=1

|𝑦𝑖 − 𝑦̂𝑖|. (2)

While MAPE is a measure of the prediction accuracy of a model and is 

given by:
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Table 3

Summary of the evaluation metrics used to evaluate prediction, classification, and clustering methods. For each specific metric it is reported the references, and the 
percentage of papers (relative to the total number of papers) using that specific metric.

Type Evaluation Metrics References % of papers

Prediction Root Mean Squared Error (RMSE) Alam et al. (2017), Vázquez et al. (2020), de Medrano and Aznarte (2020), Ji et al. 
(2020), Priambodo and Ahmad (2018), Mena-Oreja and Gozalvez (2021), Culita et al. 
(2020), Agafonov (2020), Chu et al. (2021), Ekárt et al. (2020), Offor et al. (2019), 
Kalamaras et al. (2018)

40.0%

Mean Absolute Error (MAE) Wang and Thulasiraman (2019), Alam et al. (2017), Vázquez et al. (2020), Müngen 
and Çetın Tas (2021), Mena-Oreja and Gozalvez (2021), Culita et al. (2020), Agafonov 
(2020), Di et al. (2019), Silva and Martins (2020), Loumiotis et al. (2018), Kunde et al. 
(2017), Chu et al. (2021)

40.0%

Mean Absolute Percentage Error (MAPE) Müngen and Çetın Tas (2021), Fitters et al. (2021), Priambodo and Ahmad (2018), 
Mena-Oreja and Gozalvez (2021), Loumiotis et al. (2018), Chu et al. (2021), Agafonov 
(2020), Spławińska (2017)

26.7%

Mean Squared Error (MSE) Wang and Thulasiraman (2019), Di et al. (2019), Silva and Martins (2020), More et al. 
(2016)

13.3%

Coefficient of determination 𝑅2 Wang and Thulasiraman (2019), Ji et al. (2020), Chu et al. (2021), Silva and Martins 
(2020)

13.3%

Explained Variance Wang and Thulasiraman (2019), Chu et al. (2021), Silva and Martins (2020) 10.0%

Relative Absolute Error (RAE) Alam et al. (2017) 3.3%

Root Relative Squared Error (RRSE) Alam et al. (2017) 3.3%

Weighted Mean Absolute Percentage Error (WMAPE) de Medrano and Aznarte (2020) 3.3%

Mean Absolute Deviation (MAD) Priambodo and Ahmad (2018) 3.3%

Normalized Root Mean Squared Error (NRMSE) Offor et al. (2019) 3.3%

Classification Accuracy Krishnakumari et al. (2017), Izhar et al. (2020), Mystakidis and Tjortjis (2020), 
Loumiotis et al. (2018)

13.3%

Precision and Recall Izhar et al. (2020) 3.3%

F1-score Izhar et al. (2020) 3.3%

Detection Rate (DR) Laharotte et al. (2017) 3.3%

False Alarm Rate (FAR) Laharotte et al. (2017) 3.3%

Good Classification Rate (GCR) Laharotte et al. (2017) 3.3%

Clustering Silhouette Score Wang et al. (2019), Toshniwal et al. (2020) 6.7%

Dunn Index Toshniwal et al. (2020) 3.3%
𝑀𝐴𝑃𝐸 = 1
𝑛

𝑛∑
𝑖=1

||||
𝑦𝑖 − 𝑦̂𝑖

𝑦𝑖

|||| × 100%. (3)

For classification models, the most widely used metrics in the liter-

ature are accuracy, precision and recall, and F1-score. However, in the 
context of traffic flow, the most frequently used evaluation metric is ac-

curacy, with 13.3% of the studies using that metric, and precision and 
recall, and F1-measure only appear in one study (Izhar et al., 2020) (see 
Table 3). The prevalence of these types of metrics is small in this survey 
since our query only identified 9 out of 30 studies with the classification 
task.

In more detail, accuracy is the fraction of observations correctly 
classified by a model. While precision is the proportion of positive ob-

servations given by a model that are true positive observations, and 
recall is the proportion of real positive observations that are true pos-

itive observations given by a model, i.e., the ability of the classifier to 
find all the positive samples. Finally, the F1-score is the harmonic mean 
of precision and recall.

For clustering models, the most frequently used evaluation metrics 
are the silhouette score and Dunn index. According to Table 3, silhou-

ette score is used in 6.7% of the studies found in our search, while the 
Dunn index is used in 3.3% of the studies. In detail, consider a set of 
data points 𝑋 = {𝑥1, ..., 𝑥𝑛} and a clustering model Γ. The model groups 
the data points with similar characteristics into clusters, and we need to 
assess the goodness of the model. Hence, the silhouette score measures 
the goodness of a clustering algorithm by considering how compact 
(intra-cluster distance) and separated (inter-cluster distance) the clus-

ters are, and it is computed as the average of the silhouette index of 
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each data point 𝑥𝑖 given by:
𝑠(𝑥𝑖) =
𝑏𝑖 − 𝑎𝑖

max{𝑏𝑖, 𝑎𝑖}
, (4)

where 𝑎𝑖 is the average intra-cluster distance and 𝑏𝑖 is the average inter-

cluster distance. On the other hand, the Dunn index identifies clusters 
that are compact and have small variance between the members of the 
cluster, and is given by:

𝐷 =
min1≤𝑖≤𝑐 𝛿(𝑥𝑖, 𝑥𝑗 )
max1≤𝑘≤𝑐 Δ(𝑥𝑘)

, (5)

where 𝛿(𝑥𝑖, 𝑥𝑗 ) is the inter-cluster distance between data points 𝑥𝑖 and 
𝑥𝑗 , and Δ(𝑥𝑘) is the intra-cluster distance of a cluster.

4. Discussion

Based on our search and the related work found, we can identify 
the type of data used, prediction and classification models, the pre-

processing techniques, and the performance evaluation metrics used in 
the state-of-the-art to classify and predict traffic flow. For each we now 
discuss findings and limitations. Additionally we can discuss on the lim-

itations and future opportunities regarding this type of literature survey.

4.1. Type of data

Regarding the state-of-the-art presented in the referenced articles, 
we can see that the most used type of data is historical data, which 
is used to predict and classify traffic to obtain information and make 
decisions based on this information to better control and manage traffic 
in a particular city. But with the up-and-coming ITS, short-term traffic 

flow prediction and classification is becoming a crucial part of ITS and 
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is a widely investigated topic. To predict and classify traffic flow in the 
short term, the type of data used is real-time data or historical data used 
as real-time. Therefore, real-time data are becoming an essential type 
of data to control traffic in real-time better. For instance, better control 
traffic lights, make better suggestions on what route to take and better 
inform users of the traffic conditions and the expected traffic conditions 
in the next minutes or hours to better mitigate traffic congestion and 
traffic jams in large cities.

All the different classification and prediction methods can be ap-

plied to historical data. If the data were to be used in real-time, some 
of the more complex methods could not be used because when we use 
real-time data, we want good results at the same time as fast results. 
The computation time of all methods cannot be more than 5 or 10 min-

utes. This will imply that the amount of data used is not as big as the 
amount of data used when we want to make predictions and classifi-

cations in a larger time window. As discussed earlier, historical data 
can be used both as historical and real-time data, which is an enormous 
advantage of using historical data to create the best algorithm. For ex-

ample, if we only consider the last couple of hours of traffic and make 
a prediction based only on that, we can provide real-time traffic in-

formation. Furthermore, we can also create hourly indicators based on 
all-week or monthly traffic.

Although Historical Data are the most used type of data, Floating car 
data (FCD) are the future. FCD is automatically collected from moving 
vehicles, but only modern cars can provide this data. One great advan-

tage of this type of data is that, unlike stationary devices, such as traffic 
cameras, no additional hardware is required on the road network. FCD 
is used to determine the traffic speed on the road network. These data 
allow traffic congestion to be identified, travel times can be calculated, 
and traffic reports can be rapidly generated.

4.2. Data preprocessing strategies

Raw traffic data collected from real-world sources can be contami-

nated with errors and inconsistencies that can cause problems for ma-

chine learning models. As a result, preprocessing raw data is a crucial 
step in traffic flow prediction and classification. The accuracy and reli-

ability of predictions depend on the quality of preprocessing performed 
on the data.

The main goal of data preprocessing is to convert raw data into a 
format that is clean and interpretable for algorithms. This involves sev-

eral key steps, including changing variable data types, removing outliers 
and eliminating missing values from the dataset to improve results, and 
converting categorical and textual features into numerical values that 
can be better interpreted by machine learning models.

Despite the importance of data preprocessing, some research papers 
lack detailed descriptions of the techniques used to preprocess data, 
making it difficult to assess the reproducibility, reliability, and accuracy 
of their results. It is essential to carefully document preprocessing steps 
and ensure that data is cleaned and transformed accurately to obtain 
high-quality results in traffic flow prediction and classification.

4.3. Prediction and classification tasks

Traffic flow prediction has been extensively studied in the last few 
decades using statistical methods. However, deep learning-based ap-

proaches have become increasingly popular due to their improved ac-

curacy and results. Despite their advantages, deep learning algorithms 
are black-box algorithms, making it difficult to interpret model predic-

tions for decision-making in real-world transportation applications. The 
most commonly used deep learning-based model for traffic flow pre-

diction is the LSTM network, which is well-suited for processing and 
predicting time-series data.

Regarding classification and clustering models, there is a lack of us-
9

age in traffic tasks. These models have not been widely used in the last 
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5 years, as predictive methods provide much more and better informa-

tion than classifying traffic. While clustering and classifying traffic can 
inform users about current traffic conditions, predictive methods are 
necessary to anticipate and control traffic conditions in the future. Fu-

ture research should investigate the development of hybrid models that 
combine predictive and clustering methods to provide a more compre-

hensive understanding of traffic patterns and trends. Additionally, new 
approaches should be explored to improve the interpretability of deep 
learning models for better decision-making in transportation applica-

tions.

4.4. Performance evaluation metrics

To assess the accuracy and validity of models, various performance 
evaluation metrics are employed. The purpose of these metrics is to de-

termine whether the models are suitable predictors or classifiers and 
which model performs the best. One critical aspect to avoid in all mod-

els is overfitting, a condition that arises when a statistical model starts 
describing the random errors in the data instead of the relationships be-

tween variables. Overfitting is more likely to occur when the model is 
too complex, and it reduces the model’s ability to generalize beyond 
the original dataset, leading to bias and making good predictions or 
classifications only for the training and test sets. Researchers should 
continue exploring methods to prevent overfitting, such as regularisa-

tion and cross-validation techniques, to increase the generalisability of 
the models to real-world scenarios.

4.5. Limitations and future opportunities

There are limitations that underscore the inherent challenges in con-

ducting a comprehensive review of traffic flow prediction and classifi-

cation literature. Predominantly, the emphasis on European data might 
have inadvertently omitted certain trends, patterns or techniques appli-

cable in non-European regions. Geographic factors, infrastructure qual-

ity, population density, and traffic regulations all vary across regions, 
and might significantly affect the techniques developed or preferred in 
those areas. Expanding our scope to include non-European studies could 
also allow a more in-depth examination of data differentiation, which 
might reveal new avenues of investigation.

When considering the timeframe of our study, we acknowledge 
that an extension to the last 10 to 15 years might uncover differ-

ent trends. Traffic technology and related prediction techniques have 
rapidly evolved over recent years, influenced by advances in artificial 
intelligence, machine learning, and sensor technology. A broader tem-

poral scope could offer a clearer understanding of these developments 
and their implications for the field.

Lastly, our focus on sensor-acquired data could neglect the poten-

tial benefits and trends associated with other data types, such as those 
from images, videos, or sound. The recent advancements in fields like 
computer vision and auditory signal processing could significantly in-

fluence traffic flow prediction and classification techniques. However, 
the exploration of these alternative data types could lead us into a dis-

tinct, albeit related, research landscape that may require a different set 
of expertise and research approaches.

In essence, while our literature survey offers valuable insights into 
traffic flow prediction and classification, these limitations highlight the 
multifaceted and rapidly evolving nature of the field. Future studies 
could consider these aspects for a more extensive and diverse under-

standing of the subject matter.

5. Conclusions

This literature study has provided valuable insights into the field 
of traffic prediction and classification. General conclusions highlight 
the crucial need for correctly preprocessing the datasets before using 

machine learning models. Preprocessing techniques, including missing 
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value imputation, data normalisation, feature selection, and dataset re-

duction, are crucial in achieving reliable results. Neural networks, par-

ticularly LSTM and MLP, demonstrate superior accuracy compared to 
parametric models like ARIMA and Linear Regression. Combining mod-

els, such as CNN and LSTM, yields complex models such as CNN-LSTM. 
K-means, DBSCAN, and Agglomerative Clustering are the primary clas-

sification models for traffic flow. Performance evaluation metrics, such 
as MSE, RMSE, accuracy, precision, and F1 score, provide insight into 
model effectiveness. These models contribute to improved traffic man-

agement and informed decision making by governments.

This state-of-the-art analysis also highlighted the predominant use of 
historical data in predicting and classifying traffic, enabling informed 
decision-making for traffic management. However, the emergence of 
Intelligent Transportation Systems (ITS) emphasises the importance of 
short-term traffic flow prediction and the integration of real-time data. 
Real-time data, such as Floating Car Data (FCD), offer immense po-

tential to improve traffic control and congestion mitigation, especially 
with the increasing availability of modern vehicles capable of providing 
such data without the need for additional infrastructure. While histor-

ical data exhibits advantages in its versatility for both historical and 
real-time use, the lack of detailed descriptions of data preprocessing 
techniques in some research papers poses challenges in assessing the re-

producibility, reliability, and accuracy of results. Future studies should 
prioritise comprehensive documentation of preprocessing steps to en-

sure high-quality and reliable outcomes in traffic flow prediction and 
classification.

Moreover, deep learning-based approaches, particularly LSTM net-

works, have gained popularity because of their improved accuracy. 
However, their black-box nature limits interpretability for real-world 
decision-making in transportation applications. Future research should 
focus on improving the interpretability of deep learning models and 
exploring hybrid models that integrate predictive and clustering meth-

ods to gain a more holistic understanding of traffic patterns and trends. 
It is crucial for researchers to address issues related to overfitting and 
enhance the generalizability of models to real-world scenarios. Incorpo-

rating regularisation techniques and employing cross-validation meth-

ods can mitigate overfitting and improve the applicability of models in 
practical transportation settings.

Finally, while the inclusion of only European studies limited the 
scope of this study, it was necessary to account for significant cultural 
differences in traffic patterns. However, it is essential to acknowledge 
that a wealth of knowledge can be gained from studies conducted out-

side of Europe, and future research should aim to incorporate and 
compare methods used in a more diverse range of geographical con-

texts.

List of acronyms

ITS Intelligent Transportation Systems

FCD Floating Car Data

RNN Recurrent Neural Network

CNN Convolutional Neural Network

GNN Graph Neural Network

LSTM Long-Short Term Memory

GRU Gated Recurrent Unit

SAE Stacked Auto-Encoder

GCN Graph Convolution Network

MLP Multi-Layer Perceptron

GRNN General Regression Neural Network

ARIMA Auto-Regressive Integrated Moving Average

RMSE Root Mean Squared Error

MAE Mean Absolute Error
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MAPE Mean Absolute Percentage Error
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Appendix A. Method

Table A.4

Overview of the keywords used to search for relevant papers.

Concept Keywords

Traffic “traffic” OR “urban traffic” OR “traffic flow” OR “traffic 
system” OR “traffic congestion” OR “traffic conditions” 
OR “traffic conflicts” OR “traffic density” OR “level of 
traffic stress”

Traffic Indicators and 
Machine Learning

“clustering” OR “cluster” OR “deep learning” OR 
“supervised learning” OR “unsupervised learning” OR 
“pattern mining” OR “data mining” OR “prediction” OR 
“classification” OR “forecasting”

Table A.5

Overview of the keywords used to remove not relevant papers from the search.

Concept Keywords

NOTs NOT “malware” AND NOT “network traffic” AND NOT “cloud 
computing” AND NOT “malicious” AND NOT “air traffic” AND NOT 
“cargo traffic” AND NOT “online traffic” AND NOT “internet traffic” 
AND NOT “botnet” AND NOT “ip flow” AND NOT “network flow” AND 
NOT “dns traffic” AND NOT “recognition” AND NOT “video traffic” 
AND NOT “streaming traffic” AND NOT “satellite network” AND NOT 
“video prediction” AND NOT “interconnect traffic” AND NOT 
“pavement” AND NOT “ip traffic” AND NOT “media traffic” AND NOT 
“object detection” AND NOT “encrypted traffic” AND NOT “bandwidth” 
AND NOT “traffic simulations” AND NOT “voice traffic” AND NOT 
“network management” AND NOT “datacenters” AND NOT “data 
center” AND NOT “self-driving cars” AND NOT “image segmentation” 
AND NOT “metro traffic” AND NOT “maritime traffic” AND NOT 
“traffic sign image” AND NOT “trajectory prediction” AND NOT 
“internet connections” AND NOT “image classification” AND NOT 
“classifying objects” AND NOT “collections of multimedia” AND NOT 
“anomaly detection” AND NOT “attack classification” AND NOT “cyber 
traffic” AND NOT “autonomous driving” AND NOT “traffic signs” AND 
NOT “sign identification” AND NOT “visual traffic” AND NOT “traffic 
signals” AND NOT “airspace” AND NOT “pedestrian” AND NOT 
“vehicle counting” AND NOT “anonymous traffic” AND NOT “traffic 
sound” AND NOT “object classification” AND NOT “mobile traffic” 
AND NOT “attack detection” AND NOT “vehicle classification” AND 
NOT “speed prediction”

Appendix B. Summary table

List of papers included in this survey (see Table B.6). For each paper, 
reported data include:
• the reference,
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MV, N, Agg RMSE, MAE, MAPE

FS RMSE, MAE, RAE, RRSE, CC

N RMSE, MAE, MAPE, R2, EV

- RMSE, MAE

MV, N, Agg, O RMSE, WMAPE, Bias

ER MSE, MAE

MV RMSE

MV, Agg, FS MAPE

N, FS, other Acc, F1, Prec, Rec

N, other RMSE, R2

MV, Agg, O RMSE

FE Acc

MV, N, Agg MAE

- DR, FAR, GCR

other MAE, MAPE, Acc

Agg, other RMSE, MAE, MAPE

N MSE

(continued on next page)
Table B.6

Summary table

Citation P or C? Method 
Category

Type of 
Data

Dataset Open Access? Validation Scheme

Agafonov 
(2020)

P DL HD 1760 road segments from Samara city, Russia, 
records for 60 days

- 60% train + 20% control + 20% 
validation

Alam et al. 
(2017)

P PM HD data collected in Porto, Portugal, from 2013 to 
2015 using 23 sensors every 5 min; using only 
2014

No (private to students of FEUP) -

Chu et al. 
(2021)

P DL HD Finish dataset with 4 lanes collected from 
January to August for 24 hours a day

- split in train and test (no % 
provided)

Culita et al. 
(2020)

P DL, PM HD 3 road segments from Bucharest collected from 
1 October to 31 January with 5 min time step

- the last 5 or 10 samples from the 
whole measured data are the test 
set, the remaining is the train set

de Medrano 
and Aznarte 
(2020)

P DL HD traffic and weather data from 4 specific zones 
of Madrid from 2018 and 2019, collected with 
30 sensors in each zone every 15 min

Yes 10-cross-validation scheme 
without repetition for each zone

Di et al. 
(2019)

P DL HD traffic congestion data from Helsinki, Finland, 
collected from 2018/09/01 to 2018/10/06 
every 60 seconds corresponding to 553 road 
segments

Restricted first 80% of the data (from the 
start date) as train set and the 
remaining as test set

Ekárt et al. 
(2020)

P GA HD traffic data from 4 junctions from Darmstadt, 
Germany, collected between 28th August to 
1st October 2017, sampled every 15 min

Yes first 3 weeks for training and 
final 2 weeks for testing

Fitters et al. 
(2021)

P DL HD traffic data from intersections in city of The 
Hague, Netherlands, collected between 1st 
January 2015 to 31st May 2019

Yes -

Izhar et al. 
(2020)

C CLASS HD vehicle traffic datasets from the city of Aarhus, 
Denmark, collected in 2014 from February to 
June and August to September

Yes 5-fold cross-validation with the 
method stratified sampling

Ji et al. 
(2020)

P DL HD Dataset with trajectories of taxicab from 3 
cities, Xi’an, Beijing and Porto, sampled every 
3, 60, and 15 seconds respectively

Yes previous 80% as training data 
and the rest as testing data

Kalamaras 
et al. (2018)

P PM RTD Berlin dataset collected from 18/03/2012 to 
31/03/2012 containing real vehicle speed 
measurements collected from several road 
points

Needs registration train made with data from a 
specific day of the week and test 
data from the same day at 
another week

Krishnaku-

mari et al. 
(2017)

C CLASS HD Data from two heavily congested roads in The 
Netherlands collected in March 2015

Yes -

Kunde et al. 
(2017)

P DL HD data from city of Dresden, Germany, collected 
in July 2015

Restricted different offsets configurations to 
split the data in train and test

Laharotte et 
al. (2017)

C CLUS HD, 
FCD

floating car data from city of Nantes, France, 
collected in September and November 2013

- one month to train and the last 
month to test

Loumiotis 
et al. (2018)

P DL HD, 
RTD

data collected for 4 months by a vehicle 
detection system in Attica Tollway in Athens, 
Greece

- 10-fold cross validation

Mena-Oreja 
and 
Gozalvez 
(2021)

P DL SD, 
FCD

simulated data for a Spanish freeway between 
Alicante and Murcia for 9 full days of traffic

Yes first seven days to train and the 
remaining two days for 
validation and testing (one day 
each)

More et al. 
(2016)

P DL RTD data from Ireland road traffic control collected 
for five days

Yes four days to train and one day to 
test
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- MAE, MAPE

Agg, FS, D Acc

- RMSE, NRMSE

other RMSE, MAPE, MAD

- Visualizations

- MSE, MAE, R2, EV, MeAE

MV Visualizations

Agg MAPE, Distance to centroids

MV, Agg, FS Silh, Dunn

MV RMSE, MAE

N MSE, MAE, R2, EV

- Silh

FE Visualizations
Table B.6 (continued)

Citation P or C? Method 
Category

Type of 
Data

Dataset Open Access? Validation Scheme

Müngen 
and Çetın 
Tas (2021)

P DL, PM HD traffic and weather data from Istanbul, 
Turkey, collected between 01/06/2020 and 
01/01/2021

Yes 80% for training data and 20% 
for validation data

Mystakidis 
and Tjortjis 
(2020)

C CLASS HD traffic congestion data from the city of 
Thessaloniki, Greece, from August to October 
2019

Yes 80% for training data and 20% 
for testing data

Offor et al. 
(2019)

P PM HD, SD real and simulated data from Santander, Spain Yes real data for training and 
simulated as ground truth for the 
prediction

Priambodo 
and Ahmad 
(2018)

P DL, PM HD traffic data from Aarhus, Denmark, collected 
between 13/02/2014 to 09/06/2014

- all data until 02/06/2014 as 
train data and 09/06/2014 as 
test data

Sarlas and 
Kouvelas 
(2019)

C CLASS SD simulated data for the urban network of 
Barcelona, Spain, with the duration of 5 hours

- -

Silva and 
Martins 
(2020)

P DL, PM HD traffic data from a urban passenger transport 
company in Braga, Portugal

Restricted -

Sinha et al. 
(2020)

P PM RTD traffic data of 167 unique roads of the country 
Slovenia, collected for 7 days

Yes -

Spławińska 
(2017)

C CLUS HD data from rural freeway and expressway of 
cross-sections of different regions of Poland, 
collected from 2010 to 2015

Restricted -

Toshniwal 
et al. (2020)

C CLUS HD traffic data from Aarhus, Denmark, collected 
between February 2014 to June 2014

Restricted -

Vázquez et 
al. (2020)

P DL SD, 
FCD

simulated data for two urban networks of 
Barcelona, Spain (Camp Nou and Amara)

- 5, 10 and 15 days of data to train 
and predicts 5, 10, 15, 20, 40 
and 60 min

Wang and 
Thulasira-

man 
(2019)

P DL HD data set is collected from CityPulse from 
01/03/2014 to 30/05/2014

Yes first 2 months for training and 
last month for testing

Wang et al. 
(2019)

C CLUS HD data set is collected from CityPulse from the 
city of Aarhus, Denmark, recorded every 5 min

Yes -

Zambrano-

Martinez et 
al. (2017)

C CLUS SD simulated data for the city of Valencia Restricted -
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• the aim of the paper (P = prediction; C = classification),

• categorization of the method (DL = deep learning, PM = para-

metric model, GA = genetic algorithm, CLASS = classification 
method, CLUS = clustering method),

• type of data (HD = historical data, SD = simulated data, RTD = 
real-time data, FCD = floating car data),

• a small description of the dataset,

• the type of data availability,

• validation scheme,

• preprocessing techniques (MV = handling missing values, N = 
data normalization, Agg = aggregation in time intervals, FS = fea-

ture selection, O = handling outliers, FE = feature extraction, D = 
data discretization, ER = eliminate redundancy, other = includes 
random undersampling or other task-specific technique),

• performance metrics (MSE = mean squared error, RMSE = root 
mean squared error, NRMSE = normalized root mean squared 
error, MAE = mean absolute error, MAPE = mean absolute per-

centage error, MAD = mean absolute deviation, MeAE = median 
absolute error, R2 = coefficient of determination, EV = explained 
variance, CC = correlation coefficient, RAE = relative absolute er-

ror, RRSE = root relative squared error, WMAPE = weighted mean 
absolute percentage error, Acc = accuracy, F1 = F1-score, Prec = 
precision, Rec = recall, DR = detection rate, FAR = false alarm 
rate, GCR = good classification rate, Silh = silhouette score, Dunn 
= Dunn index).
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